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Abstract

Background: Several valuation protocols for the EQ-family of instruments envision using

both latent scale DCE and TTO tasks to create value sets. Given the costly nature of TTO

data, design strategies that maximize value set precision per TTO response are important.

We consider how to select the set of health states to be valued using TTO so as to maximize

the precision of the resulting value set.

METHODS: Under simplifying assumptions, we derived a formula describing the mean

square prediction error (MSE) of the final value set as a function of (a) the number J of health

states to be valued using TTO, (b) the set S(J) of health states to be valued using TTO and

(c) the sample variance V (S(J)) of the latent utilities for the health states in S(J). From this

we formed the following hypotheses: (i) holding J fixed, increasing V (S(J)) reduces MSEs;

(b) holding V (S(J)) fixed, increasing J decreases the MSE; (c) when TTO mean utilities

are in a perfect linear relationship with latent utilities and each respondent values a single

health state, the MSE is minimized when J = 2 and the two states are chosen as far apart

on the latent utility scale as possible (i.e. when V (S(2)) is maximized). We used simulation

to evaluate whether these hypotheses held when our simplifying assumptions were relaxed.

The first set of simulations assumed an underlying linear relationship between TTO and

DCE utilities but that TTO mean utilities were scattered around this line. The second set of

simulations were parameterized using published results from the Dutch, US, and Indonesian

EQ-5D-5L valuation studies.
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RESULTS: The first set of simulations provided empirical support for all three of our

hypotheses. In the second set of simulations, data from Indonesia suggested an underlying

linear relationship between TTO and DCE utilities, whereas both the US and the Nether-

lands showed a non-linear relationship. Simulations parameterized based on the Indonesian

valuation data continued to provide empirical support for the hypotheses, whereas simula-

tions parameterized using US or Dutch valuation data refuted hypothesis (i) (i.e. for a fixed

number of health states valued using TTO, reducing the latent utilities of the health states

reduced rather than increase the MSE).

CONCLUSIONS: Given that the underlying relationship between TTO and DCE utilities

may be non-linear, we suggest choosing health states to be valued through TTO evenly across

the anticipated latent utility scale.

KEY WORDS: cost-utility analysis, EQ-5D-5L, health state preference, valuation

1 Introduction

Multi-attribute utility instruments (MAUIs) are widely used to facilitate reimbursement deci-

sions [refs]. A MAUI consists of two parts: the descriptive system that categorizes responses

into health states, and a value set that assigns a utility to each health state. Value sets

are estimated through valuation studies, in which respondents use a task such as standard

gamble (SG) [1], time trade-off (TTO) [2] or discrete choice experiments (DCE) [3] to provide

their utilities for a subset of the instrument’s health states. Statistical modelling is then used

to estimate utilities for the remaining health states. Since utilities are country-specific [4],

developing value sets for a new instrument is a costly undertaking.

Both SG and TTO tasks need to be interviewer-facilitated [5] and are thus expensive,

however DCEs can be administered online without an interviewer [3]. The simplest form of

DCEs asks respondents to choose between two health states, and produces utilities on a latent

scale. This form of DCE identifies latent utilities only up to a linear transform and requires

additional information to anchor utilities to the cardinal scale (such that full health has a

utility of 1 and states of the same utility as immediate death have a utility of 0). Various

methods for anchoring have been proposed: additional DCE tasks involving trade-offs with

differing durations [3, 6], full health [7], or dead [8]; a Location of Dead exercise from within

a Personal Utility Function approach [9, 10]; or administering some TTO tasks in addition to
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the DCE, then using a transforming or hybrid modelling approach to anchor the DCE latent

utilities to the cardinal scale [11]. In this paper we consider the administration of TTO tasks

coupled with a transforming approach.

In a transforming approach, the DCE data are modelled to derive estimated latent utilities

for all health states in the instrument. The sample mean TTO utilities for each TTO-valued

health state are then regressed onto their estimated latent utilities in order to derive an

equation relating latent utilities to mean TTO utilities for all health states captured by the

instrument. Differing numbers of TTO health states have been used for this. For example,

in valuing the EQ-5D-Y, the Slovenian valuation study used a single TTO health state (the

worst health state) [12], whereas the Japanese valuation study used 26 TTO health states

[13]. In the context of the AQL-5D [14], Rowen et al showed that differences between valuing

99 health states with TTO vs. 10 and 19 were small [11].

Even when the number of states to be valued with TTO has been decided, the questions

of which states should be valued, and how many valuations per state are required still need to

be considered. In this paper, we make some simplifying assumptions to derive a mathematical

formula for how the value set’s mean square error (MSE) varies as a function of (a) the number

of health states valued with TTO; (b) the spread of the health states valued with TTO; (c)

the number of valuations per health state. We use this formula to generate hypotheses

regarding how the MSE changes as a function of each of these criteria when our simplifying

assumptions do not hold, then test these hypotheses through simulation. We conclude with

some recommendations on the selection of health states to be valued using TTO.

2 TTO health state selection: theoretical approach

2.1 Model for TTO utilities

Let µj be the population mean utility for health state j, and let lj be the mean latent utility.

We assume the relationship between mean TTO and DCE utilities can be captured through

a linear model:

µj = β0 + β1lj + δj (2.1)

with the δs measuring the degree to which the mean TTO utilities deviate from a perfect

linear transform of the DCE utilities. As in [15, 16] these can be interpreted as random
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effects and we take δj ∼ N(0, σ2
δj). Larger values of σδj correspond to greater departures

from a linear relationship, while σδ = 0 corresponds to a perfect linear relationship.

We do not observe µj but rather seek to estimate it given latent utilities lj that for the

same of simplicity we assume are known, and TTO valuations of a subset of J health states.

Letting Yij be the observed TTO utility for subject i valuing state j, we take

Yij = µj + ϵij (2.2)

with ϵij ∼ N(0, σϵ
2
ij).

2.2 Simplifying assumptions

Suppose now that a total of J health states are to be directly valued, and that we have N

individuals each valuing K states, chosen so that each state receives the same number NK/J

valuations. Let SJ = {j(1), ..., j(J)} denote the indices of the J states to be directly valued,

and let v(SJ) = ˆvar(lj(1), . . . , lj(J)) be the sample variance of latent utilities of the states

selected for TTO valuation.

Recalling that latent utilities are identified only up to a linear transform, we assume

without loss of generality that the latent utilities of the J health states selected for inclusion

in the TTO tasks have mean zero. We make three further assumptions. First, we assume

that valuations from the same individual are independent. Second, we assume that random

variation of subject-level TTO utilities around the true mean utilities is homoscedastic (i.e.,

σϵij) depends neither on i nor j). Third, we assume that the variability of the true mean

utilities µj around the latent utilities is homoscedastic, i.e. that σδj = σδ.

With these simplifying assumptions in place we can quantify accuracy of the estimated

value set as a function of the number and spread of TTO health states selected for valuation,

and use this formula to form hypotheses about the relationships between health state selection

and accuracy of the resulting predictions. We do not expect these assumptions to hold in

practice and will examine whether our hypotheses continue to hold under departures from

these assumptions through simulation.
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2.3 Theoretical Result

In the appendix we show that the mean squared error (MSE) over allM health states captured

by the MAUI is

MSE =
1

M

M∑
k=1

E
(
(µ̂k − µk)

2
)
= σ2

δ+
(σ2

δ

J
+

σ2
ϵ

NK

)( 1

v̂(SJ)
+

M∑
k=1

l2k

)
(2.3)

As expected, increasing the sample size N or the number K of health states valued per

individual decreases the MSE. The number K is usually chosen based on the maximum

number of TTO tasks a respondent can complete before becoming tired, and is typically in

the range 10-17 [17, 18, 19]. There are time and financial costs to increasing N , and we also

note that once σ2
ϵ

NK
is small compared to

σ2
δ

J
, there are minimal benefits to increasing N , a

phenomenon noted both theoretically [20] and empirically [21]. Interview procedures that

improve data quality and potentially reduce σϵ have been developed in the context of the

EQ-5D-5L [22].

We therefore focus on the remaining modifiable factors, namely how to select J and

j(1), . . . , j(J) so as to minimize the MSE.

2.4 Hypotheses

From formula (2.3) it is apparent that:

1. For a given number J of health states to be valued using TTO, larger sample variances

v(SJ) of the latent utilities of the J health states result in smaller MSEs;

2. If the sample variance v(SJ) of the valued health states’ latent utilities is held fixed,

increasing the total number J of health states to be valued will decrease the MSE;

3. When σδ = 0, the MSE is minimized when j(1), . . . , j(J) are chosen to maximize v(SJ).

The formula in (2.3) is based on a number of simplifying assumptions. We hypothesize

that the above hypotheses will hold when there is heteroscedastcity in both the respondent

level utilities (i.e., σϵj) and in the state-level deviations from the mean (i.e., σδj), and also

when each respondent contributes multiple dependent responses. We test these hypotheses

using simulation.
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3 Simulation

3.1 The EQ-5D-5L

For the purposes of illustration, we will focus on the EQ-5D-5L. This instrument captures

five dimensions of health, namely mobility, self-care, usual activities, pain/discomfort, and

anxiety/depression. Each dimension is described using 5 levels: ”no”, ”slight”, ”moderate”,

”severe” and ”extreme” problems in the corresponding dimension. The EQ-5D-5L valuation

studies included direct TTO valuation of 86 out of the total 3125 (55) health states, organized

into 10 blocks of 10 health states, as well as 196 DCE tasks, grouped into 28 blocks of 7 tasks

[23].

Our simulations are parameterized using the three EQ-5D-5L valuation studies that, as

of Dec 2019, reported both the sample mean and standard devation of TTO utilities for

the 86 health states as well as the regression model for the latent scale DCE utilities. These

countries were the Netherlands [24], the United States [25] and Indonesia [26], with respective

sample sizes of 1003, 1134, and 1054.

3.1.1 Data generating mechanism

We simulated TTO data for 100 respondents, with each simulation scenario iterated 10,000

times. We considered four values of J , namely 2, 5, 10, 20. We bagan with each respondent

valuing a single health state. For J = 10, 20, we also considered a scenario where each respon-

dent valued 10 health states. For cases where each respondent valued 10 states, we induced

within-respondent correlation in the TTO responses through a multivariate normal distribu-

tion. The respondent-level variances σ2
ϵj were the same as the case where each respondent

valued a single health state, but with a within-respondent correlation of 0.5.

Note that the sample variance of the latent utilities of the selected health states for a

given J is maximized by choosing states as far away from their sample mean as possible. For

example, when J = 2, the sample variance will be maximized by choosing the state with the

largest latent utility and the state with the lowest latent utility. For J > 2 preferentially

choosing health states from the ends of the scale will lead to larger variances of the latent

utilities than choosing states evenly distributed across the scale. We thus sampled health

states as illustrated in the Appendix.

We considered two data generation procedures for the mean TTO utilities µj. In the first
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we simulated µj from hypothetical distributions, while in the second we used the reported

state-level mean from the three published valuation studies. We describe each of these in

turn.

For the hypothetical distributions, latent utilities lj were calculated using the published

model for DCE latent utilities for Indonesia [26]. We then simulated true mean TTO utilities

using equation (2.1) with β0 = 0, β1 = 1, and considered three choices for σδj: σ2
δj = 0.001,

representing a near perfect linear relationship between mean TTO and DCE utilities; σδj =

expit(−1.5µj − 3.5), representing a mild scatter of mean TTO utilities around DCE latent

utilities; and σδj = expit(−1.25µj − 3), representing a moderate scatter. The extent of the

scatter for the three scenarios is depicted in Figure 1. Respondent-level TTO utilities for

subject i valuing state j were generated using equation (2.2) with var(ϵij) = σ2
Y j taken to be

the state-specific sample variance from the Indonesian valuation study.

For the simulations with the mean TTO utilities parameterized using data from published

EQ-5D-5L valuation studies, we used the published model for the DCE data from each of

the three countries to calculate the latent utilities lj, and took the mean TTO utilities µj for

each of the 86 health states as the reported sample means. Respondent-level TTO utilities

for subject i valuing state j were generated using equation (2.2) with var(ϵij) = σ2
Y j taken

to be the state-specific sample variance from each country’s published valuation study.

3.1.2 Analytic procedure

We used ordinary least squares (OLS) to regress TTO responses onto latent utilities; note

that OLS will give unbiased estimates of mean utilities even when error terms are dependent

[27]. The fitted regression coefficients were used to capture the predicted mean utilities

µ̂j for the 86 states captured in the valuation studies. The mean square error (MSE) and

mean absolute error (MAE) of these predictions was calculated by comparing the predicted

values µ̂j to the true values µj specified in the data generating mechanism. These were then

averaged over all 86 health states.
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4 Results

4.1 Hypothetical TTO distributions

Data generated from hypothetical TTO distributions provided empirical support for all three

of our hypotheses (Table 1).

Firstly, weighted health state selection led to both larger sample variances of the latent

utilities among selected health states and also to smaller RMSEs and MAEs. This held for

every combination of number of states sampled, number of states valued by each respon-

dent, and extent of scatter. The difference between weighted and even health state selection

diminished as the number of health states assessed increased.

Secondly, the sample variances for J = 5 and J = 10 health states were similar (0.30

and 0.31) under even health state selection, but the RMSEs for J = 10 health states were

smaller than those for J = 5 for all three levels of scatter, providing empirical support for

our hypothesis that for a given sample variance, valuing more health states leads to smaller

RMSEs.

Thirdly, when the TTO mean utilities corresponded very closely to the latent utilities

(“Minimal Scatter” scenario in Table 1) and each respondent valued a single health state,

the smallest RMSE when occurred when just two health states were valued and weighted

health state selection was used.

As expected, the greater the scatter, the larger the RMSEs and MAEs. Having each

respondent value 10 health states rather than a single health state led to smaller MSEs and

MAEs, regardless of the total number of health states captured using TTO or the extent of

the scatter.

When each respondent valued 10 health states, using a design that captured 20 health

states outperformed a design that captured 10 health states in each scenario, even though

the sample variances of the valued health states were smaller.

4.2 TTO distributions drawn from published valuation studies

Turning now to the case where data was simulated using reported TTO mean utilities, note

from Figure 2 that the relationship between mean TTO utilities and mean latent utilities

shows two departures from linearity: a non-linear relationship between TTO and latent

utilities and a scattering of points around the fitted curve. While for Indonesia the OLS-
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Figure 1: Scatterplots of the simulated TTO means vs latent DCE utitlities

states per
# states

Minimal scatter Mild scatter Moderate scatter
respondent weighted even weighted even weighted even

R
M
S
E

1 2 0.024 0.087 0.068 0.099 0.052 0.109
1 5 0.031 0.045 0.052 0.057 0.056 0.067
1 10 0.033 0.042 0.045 0.056 0.055 0.062
1 20 0.039 0.048 0.050 0.059 0.059 0.065
10 10 0.020 0.025 0.042 0.045 0.051 0.056
10 20 0.016 0.019 0.039 0.041 0.049 0.051

M
A
E

1 2 0.022 0.073 0.056 0.081 0.042 0.088
1 5 0.029 0.040 0.041 0.046 0.044 0.054
1 10 0.030 0.038 0.036 0.046 0.043 0.050
1 20 0.035 0.043 0.040 0.048 0.046 0.053
10 10 0.019 0.024 0.031 0.035 0.039 0.044
10 20 0.016 0.018 0.029 0.031 0.037 0.040

S
am

p
le

va
ri
an

ce 1 2 1.68 0.10 1.68 0.10 1.68 0.10
1 5 0.75 0.30 0.75 0.29 0.75 0.30
1 10 0.56 0.31 0.56 0.31 0.56 0.31
1 20 0.37 0.19 0.37 0.20 0.37 0.19
10 10 0.56 0.31 0.56 0.31 0.56 0.31
10 20 0.37 0.19 0.37 0.19 0.37 0.19

Table 1: Root mean square and mean absolute errors with simulated departures from a
perfect linear relationship between TTO utilities and latent DCE utilities. We used 100
respondents and 10000 iterations
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derived line and the loess fit are almost indistinguishable, in the US the two lines separate at

both ends of the latent utility scale, and in the Netherlands there is a very clear non-linear

relationship.

The results for Indonesia, where the only departure from linearity is a random scatter,

continue to provide empirical support for our first two hypotheses: weighted health state

selection led to larger sample variances and smaller RMSEs for all scenarios with respondents

valuing a single health state (see Table 2). Moreover, the sample variances for J = 5 and

J = 10 were similar under even health state selection (0.30 and 0.31 respectively) while

the RMSE for 10 health states was smaller than that for 5. The Indonesian set-up was

uninformative about the last hypothesis, which requires the random scatter around a straight

line to be small.

For the Netherlands and the US, which both showed a non-linear relationship between

latent and TTO utilities, weighted health state selection led to larger RMSEs than even

health state selection, even though the sample variances for weighted selection were larger.

The RMSEs were largest for the Netherlands, which had the most severe departure from

linearity. In both countries valuing more health states resulted in smaller RMSEs and MAEs.

5 Discussion

We showed theoretically and empirically that when mean TTO utilities are a linear transform

of latent utilities, MSEs and MAEs are minimized by selecting health states from the two

ends of the scale. Moreover, if each subject is to value a single health state MSEs and MAEs

are minimized by having a total of two health states valued: the one with the largest and

the one with the smallest latent utility.

However, these results no longer hold with the relationships between TTO and latent

utilities seen in practice. The valuation studies we analysed showed two departures from

linearity: random variability around a straight line relationship, and an underlying non-

linear relationship. We discuss each in turn.

In the Indonesian valuation study the plot of mean TTO utilites vs. latent utilities

showed a random scatter around a straight line, and we observed that increasing the number

of health states to be valued to 10 or 20 performed better than using 2 or 5 health states.

Furthermore, in line with our finding that the benefits of weighted health state selection
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Figure 2: Scatterplots of mean TTO utilities vs. Estimated latent DCE utilities for 3 coun-
tries

states per
# states

Netherlands US Indonesia
respondent weighted even weighted even weighted even

R
M
S
E

1 2 0.338 0.222 0.125 0.192 0.086 0.168
1 5 0.271 0.153 0.123 0.110 0.088 0.093
1 10 0.220 0.164 0.116 0.106 0.085 0.088
1 20 0.162 0.147 0.111 0.109 0.084 0.090
10 10 0.217 0.157 0.109 0.093 0.080 0.081
10 20 0.155 0.133 0.098 0.087 0.075 0.077

M
A
E

1 2 0.300 0.156 0.105 0.153 0.068 0.136
1 5 0.238 0.119 0.102 0.090 0.070 0.074
1 10 0.190 0.139 0.096 0.087 0.067 0.071
1 20 0.135 0.119 0.092 0.089 0.067 0.072
10 10 0.188 0.135 0.088 0.076 0.063 0.064
10 20 0.130 0.111 0.079 0.071 0.059 0.061

S
am

p
le

va
ri
an

ce 1 2 29.71 1.65 1.40 0.07 1.68 0.10
1 5 13.82 5.67 0.63 0.24 0.75 0.29
1 10 10.90 5.79 0.48 0.27 0.56 0.31
1 20 7.27 3.66 0.33 0.17 0.37 0.19
10 10 10.91 5.79 0.48 0.27 0.56 0.31
10 20 7.27 3.66 0.33 0.17 0.37 0.20

Table 2: Root mean square and mean absolute errors using data generating mechanisms
based on the US, Dutch and Indonesian valuation studies. We used 100 respondents and
10000 iterations
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diminish as the scatter of mean TTO utilities around the latent utilities increases, weighted

health state selection was only marginally superior to even health state selection.

The US valuation study showed a mild departure from an underlying linear relationship

between TTO and latent utilities, and as in the Indonesian valuation study valuing 10 or

20 health states performed better than using 2 or 5. Furthermore, once at least 10 health

states were valued, even health state selection performed better than weighted health state

selection.

We studied both the case where each respondent values a single health state and where

each respondent values 10 health states using TTO. Studies have shown respondents’ utilities

for a given health state depend on which other health states they have been presented with.

Due to this framing effect, the valuation protocol for the EQ-5D-5L has each respondent

seeing both a mild and the most severe health state.

Note that there is no theoretical reason to expect latent utilities and TTO utilities to

follow an underlying linear relationship [28, 29]. When the underlying relationship is non-

linear, using non-linear transforms (e.g. splines or fractional polynomials) may lead to better

predictive precision. These transforms would require TTO means over the full range of latent

utilities.

There are several limitations to this work. While we considered up to 20 health states

to be valued using TTO, we did not consider larger numbers. We thus cannot comment

on whether having 100 TTO respondents valuing 10 health states each, with those health

states chosen from among 50 or 100 health states would do better than valuing a total of 20

health states. Secondly, we did not consider using non-linear transforms; this is the subject

of ongoing work. Thirdly, we did not consider sample sizes larger than 100; the rationale for

this was that the motivation for the study design was to have a relatively small sample of

respondents completing the TTO so as to reduce the costs of the study. Fourthly, the Dutch

valuation study was in the first wave of EQ-5D-5L valuation studies; subsequent studies used

an updated protocol with quality control criteria and showed less departure from linearity.

Consequently, the extent of departure from linearity in the Dutch valuation study may not

represent the true nature of the TTO-latent utility relationship. However, the US valuation

study used the updated protocol yet still shows small departures from linearity, so we believe

this remains an important feature to account for when designing the TTO portion of the

valuation study.
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We thus recommend that (a) each respondent values xx to 10 health states using TTO;

(b) 20 or more health states be directly valued using TTO; (c) these health states be spread

evenly over the range of severities.

A Mathematical Derivation

Let Xk = (1, lk) and note that µ̂k = Xkβ̂, where β̂ is the estimated value of β. Furthermore,

since we have assumed homosedasticity, equal numbers of valuations for each health state, and

independence of valuations within subjects, ordinary least squares (OLS) regression on the

responses for each subject for each state is the same as weighted least squares regression on

the state-specific means [15], which in turn is the same as ordinary least squares regression

on the state-specific means (due to homoscedasticity). Letting Ȳk denote the mean TTO

valuation for health state k, observe that

Ȳk = Xkβ + δk + ϵ̄k,

where ϵ̄k is the sample mean of the subject-specific errors for health state k. Since each state

is valued by NK/J subjects and each ϵ has variance σ2
ϵ , ϵ̄k has variance Jσ2

ϵ

NK
. We therefore

have that the

Ȳk = Xkβ + ϵ∗k, with ϵ∗k = δk + ϵ̄k

so that var(ϵ∗k) = σ2
δ + Jσ2

ϵ

NK
. Since we have assumed that the sample mean of the latent

utilities among valued health states is zero, it follows from standard results on OLS that

E(β̂) = β

var(β̂) =
(σ2

δ

J
+

σ2
ϵ

NK

)( 1
v̂(SJ )

0

0 1

)
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It follows that

E
(
(µ̂k − µk)

2
)
= E

(
(Xk(β̂ − β) + δk)

2
)

= Xkvar(β̂ − β)X ′
k + σ2

δ

=
(σ2

δ

J
+

σ2
ϵ

NK

)( 1

v̂(SJ)
+ l2k

)
+ σ2

δ .

Consequently, computing the mean of the square predictions over all health states, we have

MSE =
1

M

M∑
k=1

E
(
(µ̂k − µk)

2
)
= σ2

δ+
(σ2

δ

J
+

σ2
ϵ

NK

)( 1

v̂(SJ)
+

M∑
k=1

l2k

)

B Health State Selection
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Number of health states valued →
Health State Number ↓ Weighted Even Weighted Even Weighted Even Weighted Even

1 1 1 1 1 1 1
2
3
4
5 2 1 4 4 1
6
7
8
9

10
11
12 2
13
14 5 2
15
16
17
18
19
20
21
22
23 2
24
25 1
26
27 1
28
29
30
31 2
32 2
33
34
35
36
37
38
39 2
40
41
42
43
44
45
46
47
48 1 2
49
50
51
52
53
54 2
55
56
57 2
58
59
60 1
61
62
63
64
65 1 2
66
67
68
69
70
71
72
73
74 2 5 2
75
76
77
78
79
80
81 1
82 5
83 5 2
84
85
86 1 1 1 1

2 5 10 20
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