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ABSTRACT 

 

 

OBJECTIVES: The upcoming stand-alone discrete choice experiment (DCE) valuation 

protocol requires the Group to think about efficient and reliable approaches to assess DCE 

data quality. This manuscript introduces the garbage class mixed logit (MIXL) model as a 

convenient and performant alternative to manually screening for respondents with low data 

quality. 

METHODS: Garbage classes are typically used in latent class logit analyses to designate or 

identify group(s) of respondents with low data quality. Yet the same concept can be applied 

to achieve an automated selection of respondents in MIXL models as well. 

RESULTS: Based on a re-analysis of four DCEs, including an EQ-5D-5L dataset, it is shown 

that the garbage class MIXL model and root likelihood (RLH) tests have indistinguishable 

empirical accuracy. Previous research has shown that the latter has superior performance 

compared to internal validity tests (such as repeated and dominant choice tasks), which 

means that also garbage class MIXL models have excellent sensitivity and specificity. The 

advantage of garbage class MIXL models, however, is that they require no user effort and 

produce preference estimates that do not depend on statistical cut-off values.  

CONCLUSIONS: Including a garbage class in MIXL models removes the influence of 

respondents with a random choice pattern from the MIXL model estimates, provides an 

estimate of the number of low-quality respondents in the dataset, and avoids having to 

manually screen for respondents with low data quality based on internal and/or statistical 

validity tests. Although less versatile than the combination of standard MIXL estimates with 

separate assessments of data quality and sensitivity analyses, the proposed garbage class 

MIXL model provides a fully automated and reliable alternative that is applicable to both 

DCE with and without duration data but particularly relevant for the upcoming EQ-DCE-VT 

protocol.  

 

 

 



INTRODUCTION  

 

The Valuation Working Group (VWG) and EQ-funded researchers have for many years been 

working on a stand-alone discrete choice experiment (DCE) with duration methods for 

health-state valuations. At the EuroQol Academy meeting in Prague (2020), evidence with 

respect to the layout and design of choice tasks, optimization of experimental designs, and 

modelling strategies was presented and discussed in an open session. This resulted in a draft 

protocol[1] that is currently being piloted in Trinidad and Tobago. Final results are expected 

before the end of the year; however, based on a very similar protocol, the wellbeing of older 

people (WOOP) instrument has recently been valued without encountering any problems,[2] 

which seems to confirm that the protocol works well and is nearing its official introduction.   

Value sets for the adult versions of the EQ-5D (i.e. EQ-5D-3L and EQ-5D-5L instruments) 

are currently still based on composite TTO (cTTO) data collected using face to face 

interviews, generally supplemented with DCE data that are collected during the same 

interview. Value sets for the pediatric version of the EQ-5D (i.e. EQ-5D-Y-3L instrument) 

are based on online DCE surveys that are supplemented with a small cTTO sample that 

allows the estimated DCE values to be re-scaled to the QALY scale.  

To ensure adequate data quality in the TTO-part of valuation studies, the EuroQol Group has 

created a valuation protocol (EQ-VT) that includes stringent checks on interviewer quality 

and consistency in the cTTO tasks. For example, response data are considered of insufficient 

quality when the interviewer does not explain all aspects of the task during the warmup (e.g. 

when the respondent does not enter the lead-time TTO task during the example questions), 

spends an unreasonably small amount of time on the practice tasks, spends an unreasonably 

small amount of time on the valuation tasks themselves, or exhibits severely inconsistent 

TTO values).  

In contrast, checks on the DCE response data are much more limited and focus on the 

identification of suspicious response patterns, such as flatlining, and identification of 

respondents with unusually fast DCE completion times, so-called ‘speeders’. For the EQ-5D-

Y-3L DCE data there is no official quality control protocol (yet) but thus far dominant pairs 

and DCE completion times have been used as quality checks in all published [3-6] and recently 

submitted studies. 



One of the reasons why the VWG has not yet created an official quality control protocol for 

DCE data is that there are no widely accepted or “golden” indicators of response quality in 

DCEs. Internal validity tests, which are checks on the logic, consistency, and trade-off 

assumptions in the discrete choice data, have been recommended to screen for respondents 

with low response quality.[7-9] The dominant choice tasks that have thus far been used in the 

EQ-5D-Y studies are examples of such tests. The problem with internal validity tests, 

however, is that they cannot take response error into account and are consequently 

inconsistent with the underlying theoretical framework of DCEs. As a result, violations of 

internal validity tests are notoriously difficult to interpret, particularly when the predicted 

utility difference between the included choice options is small.[10-11] Moreover, in recent years 

there has been a clear shift from conditional logit models to statistical models that 

accommodate preference heterogeneity, with the mixed logit (MIXL) model currently being 

the most commonly used model to analyze discrete choice data[12] and also being the type of 

model selected in the draft stand-alone DCE valuation protocol.[1] In these models the 

predicted utility difference between identical choice options varies between respondents, 

which makes it even more challenging to correctly interpret violations of internal validity 

tests.[11] More importantly, also from an empirical perspective the performance of internal 

validity tests has been shown to be inadequate. For example, as explained in last year’s 

Plenary paper on the sensitivity and specificity of repeated and dominant choice tasks, the 

predictive accuracy of repeated and dominant choice tasks is only slightly better than a 

random coin flip. In contrast, likelihood-based statistical validity tests, such as the root 

likelihood (RLH) statistic, can provide a superior alternative for the assessment of 

respondents’ response quality in DCEs.[11]  

The use of the RLH statistic, however, also has some inherent limitations. Most importantly, 

the use of the RLH statistic involves a laborious process that requires practitioners to fit a 

standard MIXL, compute respondent-specific RLH statistics and associated uncertainty 

measures, and then select one or more statistical cut-off values to be able to classify 

respondents as either having provided good or bad quality responses. Subsequently, assuming 

the ultimate goal is to present statistical estimates that are unaffected or shown to only be 

marginally affected by respondents with low-quality response patterns, those identified as 

bad-quality respondents need to be excluded from the sample and additional models need to 

be fit. In addition to the required effort and estimation time, the subjective selection of one or 

more statistical cut-off values thus introduces the possibility for practitioners to manipulate 



the reported preference estimates–either deliberately or unintentionally. This makes the RLH 

statistic an interesting and valuable approach to assess respondents’ response quality in 

DCEs, but also an approach that requires substantial effort and introduces a certain degree of 

ambiguity in published estimation results. 

In this paper, a different approach to accounting for respondents with low data quality in 

DCEs is proposed: one that is based on a latent-class MIXL model with two classes. The first 

class represents the standard MIXL model that one would normally fit (e.g. when computing 

RLH statistics), whereas the second class represents a so-called ‘garbage class’ in which 

respondents make arbitrary choices between the choice options in each task. The inclusion of 

a garbage class has substantial similarities with scale-adjusted latent class (SALC) logit 

models as introduced by Magidson and Vermunt[13], particularly those in which one of the 

scale classes has a scale constrained to zero.[14] However, to the best of my knowledge, 

garbage classes have thus far not been combined with a MIXL model specification.  

The intuition of the proposed garbage class MIXL model is very similar to how a standard 

latent class logit model works. During model estimation, each respondent is assigned with a 

certain probability to the standard MIXL specification and with one minus that probability to 

the garbage class; this is based on the match between the respondents’ response patterns and 

the two utility functions. The estimated class-membership probability indicator thereby 

provides an easy-to-interpret alternative to the RLH statistic: at the individual-level, the class-

selection probability can be used to detect respondents with a response pattern that better fits 

the garbage class than the standard MIXL model, whereas at the population level the 

aggregate class-membership probability provides an indication of the number of respondents 

with a low-quality response pattern in the dataset. Also, by including a garbage class in the 

MIXL specification, the preference estimates automatically only reflect the preferences of the 

good-quality respondents, i.e. without having to manually conduct split sample analyses 

based on internal or statistical validity tests. Hence the MIXL potentially provides a 

convenient alternative that is also directly applicable to the type of models that need to fitted 

when tariffs need to be presented.   

In the remainder of this paper, the garbage class MIXL model is first formally introduced and 

subsequently compared with that of a standard MIXL model with respondent-selection based 

on RLH statistics. Based on the presented similarity between both approaches in four 

different datasets that were previously analyzed using standard MIXL models, including one 



based on the EQ-5D-5L, the MIXL model with a garbage class is presented as a simpler 

alternative to manually screening for respondents with low data quality. Instead, it 

automatically provides MIXL estimates that are unaffected by respondents with low-quality 

response patterns in addition to estimates of the number of low-quality respondents in the 

dataset and, if required, classification of individual-level respondents into good/bad quality 

participants.  

 

METHODS 

Standard MIXL model with RLH statistics 

In a MIXL model it is typically assumed that there are N respondents that each complete T 

discrete choice tasks, each consisting of J alternatives that are described by K explanatory 

variables. All explanatory variables can then be summarized in the design matrix 

𝑋𝑖𝑡𝑗𝑘 (ℝ) for i = 1, … , N;  t = 1, … , T;  j =  1, … , J;  k =  1, … , K                                         (1) 

and all observed choices in the response vector  

𝑌𝑖𝑡𝑗 ∈ {0,1} ,                                                                                                                                      (2) 

with the dependent variable (Y) being equal to 1 for the alternative that was chosen and zero 

for all other alternatives in each choice task, i.e.  

(𝑌𝑖𝑡𝑗 = 1)   ⟹  (𝑌𝑖𝑡𝑚 = 0 , ∀𝑚 ≠ 𝑗) .                                                                                     (3) 

Following Random Utility Theory (RUT), each respondent is presumed to have chosen the 

option that provides them the highest utility  

𝑈𝑖𝑡𝑗 = 𝑉𝑖𝑡𝑗 + 𝜖𝑖𝑡𝑗                                                                                                                    (4a) 

with V denoting the structural (logical) part of the utility function and 𝜖 the error term.  

A. The structural part of the utility function is typically defined as a linear additive 

function 

𝑉𝑖𝑡𝑗 = ∑ 𝛽𝑖𝑘
𝐾
𝑘=1 ∗ 𝑋𝑖𝑡𝑗𝑘                                                                                                (5) 



with 𝛽𝑖 denoting a vector of K coefficients that can take any desired joint distribution 

𝑓(𝛽|𝜃) across respondents and with 𝜃 denoting the coefficients of the joint 

distribution.  

B. The error term is assumed to be independently and identically Gumbel distributed. 

Accordingly, the probability of choosing alternative j in choice task t is defined as 

𝑃𝑖𝑡𝑗 =  
exp(𝑉𝑖𝑡𝑗)

∑ exp(𝑉𝑖𝑡𝑘)𝐽
𝑘=1

    .                                                                                                (6) 

 

In the standard MIXL model, the mixing distribution of the respondents’ 𝛽-coefficients is 

assumed to be multivariate normal (MVN) with mean vector 𝜇 and covariance matrix Σ, that 

is 

𝑓(𝛽) ~ 𝑀𝑉𝑁(𝜇, Σ).                                                                                                                 (7)      

Although different distributions can be specified without loss of generality, the MIXL models 

in this paper will make the same assumption. Based on the chosen MVN mixing distribution, 

the likelihood contribution of each individual respondent is given by: 

𝐿𝑖 = (2𝜋)−
1
2

𝑉 |det (Σ)|−1
2

 

∫  exp [−
1

2
〈(𝛽𝑖 − 𝜇)′ Σ−1 (𝛽𝑖 − 𝜇)〉 +

∞

−∞

∑ ∑ (𝑌𝑖𝑡𝑗 log (𝑃𝑖𝑡𝑗))𝐽
𝑗=1

𝑇
𝑡=1  ] 𝑑𝛽                                                                                                (8) 

and the individual-level root likelihood (RLH) statistic is defined as the geometric mean of 

the respondents’ likelihood across the T choice tasks in the DCE 

𝑅𝐿𝐻𝑖 = (𝐿𝑖)
1/𝑇  .                                                                                                                     (9) 

 

Interestingly, a null model with equal choice probabilities for all choice options (i.e. based on 

entirely random choice patterns) results in a RLH of 1/J. As such, respondents with RLHi≤1/J 

could be defined as ‘bad quality’ respondents. However, to appropriately take the statistical 

uncertainty of the RLH estimate into account, it makes sense to compute the probability that 

the RLH estimates are less than or equal to 1/J and to compare this statistic with different cut-

off values (e.g. 0.01, 0.05 and 0.10).[11] If the estimated probability is larger than the chosen 

cut-off value, respondents are classified as having provided low-quality responses, or as 

(sufficiently) good-quality responses otherwise.  



MIXL model with a garbage class 

The garbage class MIXL model represents a relatively simple extension of the standard 

MIXL model in the sense that the only required adjustment of the model specification is the 

multiplication of the structural component of the utility function (𝑉𝑖𝑡𝑗) with a class 

membership parameter (𝜑𝑖) 

𝑈𝑖𝑡𝑗 = 𝜑𝑖 ∗ 𝑉𝑖𝑡𝑗 + 𝜖𝑖𝑡𝑗 .                                                                                                          (4b) 

No other changes are necessary and the interpretation of the class-membership parameter is 

also straight-forward: 𝜑𝑖 represents the respondent-specific probability of being assigned to 

the standard MIXL utility specification; if 𝜑𝑖 equals 1, respondents are entirely assigned to 

the standard MIXL utility specification (𝑈𝑖𝑡𝑗 = 𝑉𝑖𝑡𝑗 + 𝜖𝑖𝑡𝑗), and if 𝜑𝑖 equals 0 there is no 

contribution from the structural part of the utility function and respondents make choices 

entirely based on the error term (𝑈𝑖𝑡𝑗 = 𝜖𝑖𝑡𝑗). When aggregated, the sample average 𝜑𝑖 

represents the class share of the MIXL model and the sample average of  1 − 𝜑𝑖 the garbage 

class share, which is of particular interest because it provides a readily available estimate of 

the number of low-quality respondents in the dataset. Similar to standard latent class logit 

models, it often makes sense to model the class membership using a binary logit model: 

𝜑𝑖 =  
exp (𝛾Z𝑖 )

1+exp (𝛾Z𝑖 )
                                                                                                                    (10) 

where Z𝑖 and 𝛾 denote the set of included class-membership predictor variables and 

corresponding vector of class membership model parameters, respectively. However, to 

appropriately compare the garbage class MIXL model with the RLH method, which does not 

rely on covariates, the 𝜑𝑖 parameters in this paper are estimated directly.  

In a garbage class MIXL model, the estimated preference parameters have the advantage to 

only reflect the preferences of the good-quality respondents. This is different from the 

standard MIXL model, in which the preference parameters need to simultaneously reflect the 

choice patterns of the good and bad quality respondents. Accordingly, both models produce 

identical preference estimates if there are no low-quality respondents identified in the dataset. 

However, the more respondents with a low-quality response pattern, the more the standard 

MIXL estimates would be biased towards zero with a corresponding increase in the relative 

size of standard deviations of the mixing distribution. In contrast, the estimates of the MIXL 

model with a garbage class would remain unaffected, without the need to manually select 



respondents based on arbitrary statistical cut-off values and without having to produce 

sensitivity analyses based on the manual exclusion of low-quality respondents.   

 

Model estimation 

Both the standard and the MIXL model with a garbage class can be estimated using simulated 

maximum likelihood methods (e.g. using Apollo[15] or Biogeme[16] software) but can also be 

conveniently estimated using Bayesian Markov-Chain Monte Carlo (MCMC) methods. The 

latter involves the selection of prior densities for the model parameters and updating these 

based on the likelihood of the data, which is the approach that is used in this paper. 

Uninformative multivariate normal priors (i.e., with a mean of zero and standard deviation of 

10) were assigned to μ, Bernoulli(0.5) priors to the 𝜑𝑖 parameters, and a Wishart prior with 

an identity scale matrix and K degrees of freedom to the inverse variance-covariance matrix 

(i.e. Σ−1). Accordingly, the MIXL specification allows for potentially correlated preference 

parameters. Standard Gibbs update steps were used to update μ and Σ−1, slice update steps to 

update 𝜑𝑖, and a Metropolis-within-Gibbs algorithm with antithetic sampling as described by 

Bédard et al. (2014) to update the 𝛽𝑖 parameters. All estimations were performed using the 

OpenBUGS software package[17] and were based on 25,000 MCMC iterations to let 3 MCMC 

chains converge and 75,000 iterations to reliably approximate the posterior distribution. 

Convergence was evaluated based on a visual inspection of the chains and the convergence 

diagnostics as implemented in the OpenBUGS package. 

 

Datasets 

The performance of the garbage class MIXL model was compared with that of the standard 

MIXL model combined with RLH estimates based on a re-analysis of four health-related 

DCEs. In a previous Plenary paper, these DCEs were used to assess the sensitivity and 

specificity of repeated and dominant choice tasks in DCEs in comparison with that of the 

RLH statistic.[18] Table 1 provides an overview of the DCE topics, the type of DCE designs 

that were used, and the DCE and dataset dimensions. Briefly summarized, all four datasets 

were collected using DCE instruments that were a replication of previously existing 

publications. Hence the attributes, levels and visual layouts were already tested and verified 

by the original authors. All data were collected via unattended online MTurk surveys. This 

ensured a mixture of good and bad quality respondents, which is essential for a meaningful 



comparison between the standard and garbage class MIXL model. In each DCE, both the 

order of the choice tasks and position of the choice options per choice task were randomized. 

All respondents received a small financial compensation for successfully completing the 

survey and, to ensure approximately US nationally representative samples, stratified quota 

sampling was implemented based on sex (male/female) and age groups (18-34/35-54/55-

74/75+). Appendix C in the Online Supplemental found at 

https://doi.org/10.1016/j.jval.2022.01.015 provides a detailed overview of the sample 

representativeness and survey drop-out rates in each of the four datasets.  

 



Table 1. Overview of the four datasets that are used in the MIXL model comparisons 

 

DCE topic *  DCE design # attributes/levels optout # parameters # respondents 
# choice tasks 

per respondent 

# choice options 

per choice task 

1.  Antibiotics [7] Full factorial ** 2/2/2 No 3 750 13 2 

2.  Vaccines [8] 
Bayesian D-

efficient *** 
4/3/3/3/2 Yes 11 500 16 3 

3.  Meals [9] 
Bayesian D-

Efficient *** 
3/3/4/4/4 Yes 14 500 14 5 

4.  EQ-5D-5L [10] 
Bayesian D-

Efficient *** 
5/5/5/5/5 No 20 500 21 2 

 

* Citations of the original publications in parentheses. ** Each respondent completed all possible (non-dominant) pairwise choice tasks  

*** Respondents completed one subdesign of a heterogeneous Bayesian DCE design with 10 subdesigns [25]



Comparison #1.  Similarity between respondent classification at the sample level 

 

The first comparison between the standard and garbage class MIXL model looked at the 

percentage of respondents that are classified as having a good or bad quality response pattern 

in each of the four datasets. For the standard MIXL model, based on Jonker et al.[1], three 

increasingly more conservative cut-off values were specified based on the mean posterior 

probability of the respondents’ RLH<1/J (i.e. low-response quality) being larger than 0.01, 

0.05 and 0.10, respectively. For the garbage class MIXL model, similar cut-off values were 

specified based on the mean posterior probability of 𝜑𝑖<0.50 (i.e. garbage class membership) 

being larger than 0.20, 0.75, and 0.95, respectively. These latter values were chosen to 

approximately maximize the similarity between both methods across the four datasets. 

Obviously, the more similar both approaches are, the smaller the achieved minimum absolute 

differences between the methods will be.  

 

Comparison #2.  Similarity between individual-level respondent classifications 

 

The second model comparison was based on the total number of respondents that are 

identically classified by both approaches. More specifically, for each of the three increasingly 

more conservative cut-off values, the percentage of respondents that are identically classified 

by both models was calculated. The more similar both approaches are, the higher the 

percentage of respondents that are identically classified will be.   

 

Comparison #3.  Similarity between the MIXL estimates 

 

The third model comparison directly compared the MIXL estimates. In the MIXL model with 

a garbage class, the reported MIXL estimates are automatically corrected for the influence of 

respondents with low-quality response patterns. For the standard MIXL, however, four 

different sets of model estimates needed to be compared, i.e. estimates for the entire sample 

without any respondent selection as well as estimates for the subsets of good-quality 

respondents based on the three RLH cut-off values. As previously mentioned, when 

respondents with a low-quality response pattern are excluded from the sample, the MIXL 

estimates after respondent selection should have larger absolute mean values combined with a 

reduction in the relative size of the reported standard deviations – and become more similar 

to the estimates of the garbage class MIXL model. 



RESULTS 

Table 2 presents the percentage of respondents classified with a low-quality response pattern 

by the RLH statistic and the garbage class MIXL model. As shown, both methods produce 

close to identical classifications, with a mean and maximum difference of 2 and 5 percentage 

points, respectively, across the included datasets and scenarios.  

Table 3 presents the percentage of respondents that are identically classified by both methods. 

Across all datasets and scenarios, approximately 95% of all respondents are identically 

classified by the RLH and garbage class MIXL models. As with the comparison at the 

aggregate level, the individual-level classification is slightly less congruent for scenario 1 

(94%) than for scenarios 2 and 3 (96%) but the difference is small.   

Table 4 provides a comparison of the MIXL model results for the antibiotics dataset, which is 

the smallest of the four datasets and easier to interpret than the EQ-5D table, which is 

included in the Appendix. As shown in Table 4, the inclusion of a garbage class has a major 

impact on the MIXL estimates. Most importantly on the choice consistency, with an 

approximately 2.5x increase in the size of the mean preference parameters. The size of the 

standard deviations of the normal distribution relative to the mean estimates also decreases. 

In the standard MIXL model, the SD estimates range from slightly smaller (0.9 times) to 

slightly larger (1.1 times) than the mean estimates, whereas in the garbage class MIXL model 

all SD estimates are somewhat (0.8 times) to substantially (0.5 times) smaller than the mean 

estimates. Finally, the relative attribute importances are also affected, with attributes 2 and 3 

becoming somewhat (i.e. 13% and 18%) more important relative to attribute 1, respectively. 

When comparing the garbage class MIXL estimates to the MIXL model estimates after 

respondents with a low RLH are excluded from the analyses, a similar effect can be observed. 

The more low-quality respondents are excluded, the stronger the MIXL estimates resemble 

the garbage class MIXL model estimates. Moreover, Tables 1-3 in Appendix A of the Online 

Supplemental provide the same sets of MIXL estimates for the other three datasets. Based on 

the smaller number of low-quality respondents in these datasets (cf. Table 2 and the garbage 

class share estimates), the difference in choice consistency, impact on the standard deviations 

of the normal distributions, and particularly shifts in relative attribute importance are smaller 

than in the antibiotics dataset. However, the same effects can be observed. In addition, the 

standard MIXL models after RLH selection produce close to identical estimates as the 

garbage class MIXL model.    



Table 2. Percentage of respondents classified with a low-quality response pattern, by method, 

dataset, and cut-off values * 

 

 scenario 

 #1 #2 #3 
    

MIXL with RLH selection  prob(RLHi<1/J)>0.01 prob(RLHi<1/J)>0.05 prob(RLHi<1/J)>0.10 

Antibiotics 0.38 0.29 0.25 

Vaccines 0.09 0.06 0.05 

Meals 0.20 0.08 0.04 

EQ-5D 0.27 0.14 0.10 

    

MIXL with garbage class prob(𝜑𝑖<0.5)>0.20 prob(𝜑𝑖<0.5)>0.75 prob(𝜑𝑖<0.5)>0.95 

Antibiotics 0.37 0.31 0.27 

Vaccines 0.12 0.09 0.08 

Meals 0.26 0.08 0.03 

EQ-5D 0.24 0.13 0.10 
    

 absolute difference  absolute difference  absolute difference  

Antibiotics  0.00 0.02 0.02 

Vaccines 0.03 0.03 0.04 

Meals 0.05 0.00 0.01 

EQ-5D 0.03 0.01 0.01 
    

 

* Note: scenario 1 = prob(RLHi<1/J)>0.01 & prob(𝜑𝑖<0.5)>0.20,  

              scenario 2 = prob(RLHi<1/J)>0.05 & prob(𝜑𝑖<0.5)>0.75,  

             scenario 3 = prob(RLHi<1/J)>0.10 & prob(𝜑𝑖<0.5)>0.95, with  

RLH = root likelihood, J = number of choice options per choice task, and 

𝜑𝑖  = probability of MIXL (as opposed to garbage class) membership. 

 

 

 

 

 

 

 

 

 

 

 

 



Table 3. Percentage of respondents identically classified by both methods, by dataset and cut-

off value scenario *  

 

 scenario * 

 1 2 3 

Antibiotics 0.97 0.97 0.96 

Vaccines 0.97 0.97 0.96 

Meals 0.90 0.96 0.98 

EQ-5D 0.93 0.94 0.94 

Average 0.94 0.96 0.96 

 

* Note: scenario 1 = prob(RLHi<1/J)>0.01 & prob(𝜑𝑖<0.5)>0.20,  

              scenario 2 = prob(RLHi<1/J)>0.05 & prob(𝜑𝑖<0.5)>0.75,  

             scenario 3 = prob(RLHi<1/J)>0.10 & prob(𝜑𝑖<0.5)>0.95, with  

RLH = root likelihood, J = number of choice options per choice task, and 

𝜑𝑖  = probability of MIXL (as opposed to garbage class) membership. 

 

 

 

 

 

 

 

Table 4. Antibiotics – Garbage class MIXL and MIXL estimates  

 garbage MIXL  Standard MIXL  standard MIXL  standard MIXL  standard MIXL 

 N=750  N=750  N=466 *  N=533 **  N=563 *** 

 coef. std.err.  coef. std.err.  coef. std.err.  coef. std.err.  coef. std.err. 

speed (mean) 2.96 0.20  1.21 0.08  3.03 0.21  2.46 0.14  2.22 0.14 

convenience (mean) 4.84 0.34  1.82 0.11  5.49 0.38  3.94 0.23  3.47 0.21 

confidence (mean) 10.1 0.70  3.59 0.18  11.9 0.78  7.98 0.42  6.92 0.37 

         
      

speed (SD) 1.58 0.18  1.10 0.09  1.59 0.18  1.29 0.13  1.21 0.16 

convenience (SD) 3.81 0.32  2.01 0.11  4.55 0.38  3.26 0.23  2.97 0.21 

confidence (SD) 5.91 0.50  3.33 0.18  6.96 0.59  4.92 0.36  4.48 0.34 

               

garbage class share 0.34 0.01  n/a  n/a  n/a  n/a 

 

*,**,*** MIXL estimates after RLH selection with pr(RLHi<½)>0.01, 0.05, and 0.10, respectively  

 

 

 



DISCUSSION 

The proposed garbage class MIXL model is an elegantly simple extension of standard MIXL 

models. Hence it is unexpected that there are so few (if any) previous attempts to combine 

MIXL models with a garbage class, particularly because the impact of low-quality 

respondents on the MIXL model estimates was found to be substantial. Interestingly, the 

absence of existing applications is unrelated to the model’s empirical performance: the 

garbage class MIXL model exhibits close to identical performance as the far more commonly 

used RLH statistic. Accordingly, the garbage class MIXL model represents a reliable method 

to accommodate for flat-lining, heuristics, and particularly random response patterns in the 

data, and has superior performance relative to internal validity tests such as repeated and 

dominant choice tasks. 

From a practical perspective, the garbage class MIXL model can be easily implemented in 

existing software packages. The model is also easily generalizable to (stand-alone) DCE with 

duration data, which is of particular importance for the upcoming EQ-DCE-VT protocol. The 

garbage class MIXL also has the advantage of producing preferences estimates that are 

unaffected by low-quality respondents without having to manually screen for respondents 

with low data quality based on arbitrary cut-off values. The resulting shift in choice 

consistency and changes in relative attribute importances can have a profound impact on 

willingness-to-pay (WTP), maximum acceptable risk (MAR), DCE uptake predictions, and, 

in case of the EQ, estimated tariffs. In this sense the garbage class MIXL model provides a 

sensible default specification. That is, the garbage class MIXL automatically reduces to the 

standard MIXL if there are no respondents with low quality response patterns identified, yet 

provides MIXL estimates that are automatically purged from the impact of respondents with 

low data quality if such respondents do exist in the data.  

Another important advantage of the garbage class MIXL model is that the garbage class 

membership probability estimates can be directly interpreted as measurements of DCE data 

quality.  

▪ At the individual level, the estimated garbage class-membership probabilities can be 

used to identify respondents with low data quality in a very similar fashion as RLH 

selection. Similar to the RLH approach appropriate statistical cut-off values need to 

be selected, which implies that some degree of ambiguity remains in the classification 

of respondents with low data quality. In this respect, it is important to mention that the 



RLH and garbage class approach were found to provide close to identical results. 

Therefore established sensitivity and specificity results of Jonker et al. [11] are also 

relevant to the garbage class MIXL model. More specifically, the prob(RLHi<1/J)>0.05  

reference classification rule closely corresponds to prob(𝜑𝑖<0.5)>0.75, which implies that 

the latter can be recommended for the garbage class MIXL model. Of course, more 

stringent cut-off values can be selected depending on the research objective. More 

importantly, in contrast to RLH selection, it is not necessary to re-fit the model when 

the subset of respondents with low-quality response data has been identified; the 

garbage class MIXL estimates already are purged from the influence of low-quality 

respondents.  

▪ At the sample level, the average garbage class-membership probability summarizes 

the garbage class share and thus provides an estimate of the number of low-quality 

respondents in the dataset. As mentioned in the introduction, reliable indicators of 

DCE data quality are scarce whereas our field faces increasing pressure from policy 

makers, regulators, and other stakeholders to not only follow good research practices 

but to also ensure adequate quality control and to provide DCE data quality 

assurances. From this perspective, being able to objectively quantify DCE data quality 

based on an approach that is consistent with the underlying theoretical framework of 

DCEs is an important feature of the proposed model. Moreover, unlike individual-

level respondent classification, garbage class membership probabilities are readily 

available from the model’s output – without having to select arbitrary cut-off values.   

Finally, as mentioned in the methods section, it is straight-forward to extend the garbage class 

MIXL specification with class-membership predictor variables. This could, for example, 

accommodate a formal evaluation of the determinants of garbage class-membership based on 

respondent characteristics and DCE response times. Such analyses were beyond the scope of 

this paper but constitute an interesting avenue for future research, e.g. to see whether DCE 

response times are accurate predictors of garbage class membership.  

 

In terms of model flexibility, unlike (scale-adjusted) latent class logit models, the garbage 

class MIXL model does not assume identical within-class preferences. Hence the proposed 

model relaxes a restrictive assumption that in latent class logit models often results in the 

selection of too many classes, leading to over parameterization and many, relatively small, 

classes.[12] In contrast, the standard garbage class MIXL model is already quite flexible 



despite only comprising two classes. Of course, in some situations the standard model can be 

too parsimonious to adequately reflect the distribution of the good-quality respondents’ 

preferences. In such cases, a more flexible mixing distribution would be warranted, 

potentially one that can accommodate multiple MIXL classes [22-24] but in case of EQ-5D 

related research preferably with a more flexible mixing distribution that does not 

automatically induce multi-modal mixing distributions.[25]  

Another interesting comparison can be made between the garbage class MIXL model and the 

attribute non-attendance (ANA) literature. As mentioned by one of the reviewers of this 

paper, in an ANA framework the garbage class represents the extreme case when all of the 

attributes are ignored, and there could of course also be intermediate cases where some 

attributes are ignored but not all. In line with previous contributions modelling non-

attendance in a mixed logit framework (e.g.[26-29]), accommodating such response styles in an 

ANA framework can be seen as an extension of the garbage class MIXL model, albeit at the 

cost of its appealing simplicity. This is certainly true. In addition, it should probably be 

mentioned that intermediate cases of non-attendance behavior can also be captured within a 

random heterogeneity specification like the garbage class MIXL model, which means that an 

ANA extension of the model is only recommendable when behavioral ANA estimates are of 

direct interest. In applied DCE research, it will often be preferable to rely on a garbage class 

MIXL model without ANA extensions, particularly when WTP or MAR or EQ-5D tariff 

estimates need to be reported.[28]  

Even though statistical methods such as the garbage class MIXL model and RLH test 

statistics can relatively reliably detect low-quality respondents, they are unable to 

differentiate between those who a) are willing to give honest, thoughtful responses but truly 

do not care much about the included attributes, and b) those who are unmotivated, inattentive, 

and essentially provide dishonest answers to receive financial incentives with the least 

amount of effort. While the latter group of respondents should definitely be removed from the 

analyses, and particularly in online surveys are likely to represent the majority of garbage 

class respondents, it should be noted that the exclusion of the former group is undesirable and 

can also bias the estimates and uptake predictions.  

Other disadvantages that are shared between the garbage class MIXL model and the RLH 

approach are that they both depend on the quality of the individual-level estimates. Hence 

their performance relies first of all on the correctness of the model specification but also on 



the efficiency of the DCE design and on the number of choice tasks per respondent. As such, 

both approaches benefit strongly from the use of efficient DCE designs that are optimized 

with informative, non-zero priors, particularly in the case of DCE with duration designs.[30] 

Vise versa, neither of the two approaches seems particularly recommendable if the number of 

choice tasks per respondent in the DCE is considerably smaller than the number of 

parameters in the utility function to be estimated.  

As a final note, even though the garbage class MIXL model provides a convenient approach 

to be able to detect and remove the influence of respondents with low-quality response 

patterns from the statistical analyses of DCEs, also for DCE with duration datasets, it is 

neither intended nor recommended to be used as a substitute for a carefully designed survey 

instrument. After all, response quality and behavioral efficiency are not exogenously 

determined; they endogenously depend on respondents’ engagement/motivation and on the 

level of task complexity, which in turn is affected by the DCE design dimensions and various 

design aspects, such as the type of experimental DCE design, the inclusion of attribute level 

overlap, the visual presentation of the choice tasks, and the inclusion of well-designed DCE 

warm-up tasks, see e.g. [31-34] The better the quality of the survey instrument and the more 

engaged and motivated the survey respondents are, the less important it is to fit a garbage 

class MIXL model. All of these aspects are already taken into consideration in the pilot EQ 

stand-alone DCE protocol. Accordingly, the optimal outcome is a garbage class MIXL model 

that assigns very few respondents to the garbage class and consequently produces almost 

identical results as the standard MIXL model, which would imply that the proposed model is 

merely used to ensure correct results and allows researchers to report that very few 

respondents were assigned to the garbage class. 
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SUPPLEMENTAL 

 

 

Appendix A  - MIXL model estimates for the vaccines, meals, and EQ-5D studies



Table A1. Vaccines - Garbage class MIXL and MIXL estimates 

 

 garbage MIXL  standard MIXL  standard MIXL  standard MIXL  standard MIXL 

 N=500  N=500  N=455 *  N=470 **  N=477 *** 

 coef. std.err.  coef. std.err.  coef. std.err.  coef. std.err.  coef. std.err. 

effectiveness 40% (mean) 3.23 0.22  2.21 0.17  2.90 0.23  2.66 0.21  2.51 0.18 

effectiveness 60% (mean) 6.18 0.33  4.43 0.25  5.69 0.33  5.26 0.30  5.00 0.27 

effectiveness 80% (mean) 8.41 0.43  6.17 0.33  7.87 0.42  7.28 0.38  6.93 0.35 

severe effects 10/1m (mean) -0.40 0.12  -0.37 0.10  -0.38 0.12 
 -0.40 0.11  -0.38 0.12 

severe effects 100/1m (mean) -1.82 0.19  -1.50 0.16  -1.82 0.19  -1.72 0.17  -1.65 0.17 

mild effects 3/10 (mean) -0.18 0.11  -0.12 0.09  -0.16 0.11  -0.18 0.10  -0.16 0.09 

mild effects 5/10 (mean) -0.69 0.12  -0.53 0.10  -0.65 0.11  -0.65 0.11  -0.61 0.11 

duration 6m (mean) 0.63 0.12  0.48 0.10  0.60 0.12  0.55 0.10  0.55 0.10 

duration 12m (mean) 1.48 0.14  1.12 0.11  1.43 0.13  1.33 0.12  1.28 0.11 

protection after 4w (mean) -0.18 0.09  -0.12 0.08  -0.19 0.09  -0.15 0.09  -0.13 0.08 

no vaccine (mean) -2.89 0.96  -1.10 0.46  -2.38 0.78  -1.68 0.63  -1.47 0.57 

               

effectiveness 40% (SD) 2.24 0.21  1.93 0.16  2.12 0.21  2.10 0.19  2.07 0.17 

effectiveness 60% (SD) 4.41 0.30  3.84 0.22  4.23 0.29  4.12 0.26  4.04 0.25 

effectiveness 80% (SD) 6.25 0.38  5.47 0.29  5.99 0.37  5.82 0.32  5.74 0.32 

severe effects 10/1m (SD) 1.05 0.13  0.89 0.12  1.08 0.14  1.03 0.13  0.96 0.13 

severe effects 100/1m (SD) 2.54 0.20  2.15 0.17  2.54 0.20  2.44 0.19  2.35 0.18 

mild effects 3/10 (SD) 0.62 0.12  0.50 0.09  0.55 0.11  0.57 0.10  0.53 0.10 

mild effects 5/10 (SD) 1.07 0.15  0.82 0.13  0.89 0.13  0.94 0.13  0.91 0.13 

duration 6m (SD) 0.71 0.13  0.70 0.10  0.78 0.12  0.75 0.12  0.72 0.10 

duration 12m (SD) 1.34 0.15  1.28 0.12  1.38 0.14  1.35 0.14  1.30 0.12 

protection after 4w (SD) 0.51 0.11  0.48 0.09  0.53 0.10  0.54 0.10  0.53 0.10 

no vaccine (SD) 15.0 1.16  8.03 0.56  12.7 1.00  10.5 0.81  9.61 0.68 

               



garbage class share 0.11 0.01  n/a  n/a  n/a  n/a 

 

                                                    *,**,*** MIXL estimates after RLH selection with pr(RLHi<⅓)>0.01, 0.05, and 0.10, respectively  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Table A2. Meals - Garbage class MIXL and MIXL estimates 

 

 garbage MIXL  standard MIXL  standard MIXL  standard MIXL  standard MIXL 

 N=500  N=500  N=400 *  N=459 **  N=478 *** 

 coef. std.err.  coef. std.err.  coef. std.err.  coef. std.err.  coef. std.err. 

tastes good (mean) 1.72 0.14  1.36 0.10  2.08 0.17  1.49 0.12  1.51 0.12 

tastes very good (mean) 3.55 0.20  2.66 0.15  4.06 0.24  3.11 0.18  2.94 0.17 

health neutral (mean) 3.27 0.20  2.43 0.15  3.70 0.24  2.96 0.19  2.62 0.17 

healthy (mean) 5.01 0.27  3.74 0.19  5.65 0.32  4.53 0.24  4.09 0.22 

15 min prep. time (mean) -0.34 0.10  -0.18 0.07  -0.40 0.10  -0.28 0.09  -0.30 0.09 

30 min prep. time (mean) -1.07 0.12  -0.67 0.08  -1.18 0.12  -0.84 0.10  -0.85 0.10 

45 min prep. time (mean) -2.07 0.15  -1.50 0.11  -2.39 0.18  -1.82 0.14  -1.76 0.13 

10 min travel time (mean) -0.30 0.08  -0.18 0.06  -0.31 0.09  -0.22 0.08  -0.17 0.08 

20 min travel time (mean) -0.95 0.09  -0.64 0.07  -1.06 0.10  -0.72 0.09  -0.73 0.08 

30 min travel time (mean) -1.51 0.10  -1.03 0.07  -1.54 0.11  -1.18 0.09  -1.12 0.09 

$4 price (mean) -0.43 0.10  -0.24 0.07  -0.36 0.10  -0.32 0.09  -0.33 0.08 

$6 price (mean) -1.08 0.13  -0.68 0.10  -1.15 0.15  -0.90 0.12  -0.81 0.11 

$8 price (mean) -2.28 0.18  -1.66 0.13  -2.56 0.20  -1.99 0.17  -1.87 0.15 

no meal (mean) -3.34 0.58  -2.73 0.35  -2.40 0.46  -3.01 0.45  -3.14 0.40 

               

tastes good (SD) 1.36 0.15  1.24 0.10  1.51 0.17  1.29 0.13  1.26 0.12 

tastes very good (SD) 2.67 0.21  2.50 0.14  3.03 0.23  2.64 0.17  2.66 0.16 

health neutral (SD) 2.40 0.21  2.34 0.14  2.82 0.25  2.62 0.18  2.42 0.17 

healthy (SD) 3.68 0.27  3.40 0.18  4.08 0.32  3.72 0.23  3.56 0.22 

15 min prep. time (SD) 0.70 0.14  0.69 0.09  0.84 0.16  0.76 0.11  0.68 0.11 

30 min prep. time (SD) 1.22 0.14  1.15 0.09  1.41 0.16  1.22 0.12  1.15 0.11 

45 min prep. time (SD) 1.83 0.17  1.75 0.11  2.28 0.22  1.93 0.15  1.78 0.15 

10 min travel time (SD) 0.53 0.10  0.46 0.07  0.56 0.11  0.60 0.10  0.47 0.08 

20 min travel time (SD) 0.70 0.10  0.67 0.08  0.74 0.13  0.77 0.10  0.71 0.09 



30 min travel time (SD) 0.91 0.12  0.91 0.09  0.97 0.16  0.95 0.11  0.81 0.09 

$4 price (SD) 0.85 0.13  0.81 0.08  0.85 0.12  0.91 0.11  0.65 0.09 

$6 price (SD) 1.85 0.15  1.55 0.10  1.98 0.18  1.71 0.14  1.49 0.12 

$8 price (SD) 2.77 0.20  2.44 0.13  3.08 0.21  2.69 0.17  2.46 0.15 

no meal (SD) 5.35 0.60  4.33 0.33  5.24 0.51  5.20 0.45  4.70 0.40 

               

garbage class share 0.16 0.01  n/a  n/a  n/a  n/a 

 

                                                       *,**,*** MIXL estimates after RLH selection with pr(RLHi<⅕)>0.01, 0.05, and 0.10, respectively 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Table A3. EQ-5D - Garbage class MIXL and MIXL estimates 

 

 garbage MIXL  standard MIXL  standard MIXL  standard MIXL  standard MIXL 

 N=500  N=500  N=365 *  N=428 **  N=451 *** 

 coef. std.err.  coef. std.err.  coef. std.err.  coef. std.err.  coef. std.err. 

mobility 2 (mean) -0.82 0.11  -0.71 0.08  -0.80 0.12  -0.80 0.10  -0.77 0.10 

mobility 3 (mean) -1.61 0.13  -1.30 0.10  -1.59 0.13  -1.49 0.11  -1.48 0.11 

mobility 4 (mean) -2.92 0.16  -2.34 0.13  -2.93 0.16  -2.73 0.15  -2.63 0.15 

mobility 5 (mean) -4.70 0.22  -3.70 0.17  -4.86 0.22  -4.42 0.20  -4.22 0.20 

usual activities 2 (mean) -0.65 0.12  -0.55 0.08  -0.7 0.12  -0.65 0.11  -0.59 0.10 

usual activities 3 (mean) -1.31 0.12  -1.06 0.09  -1.37 0.13  -1.27 0.11  -1.19 0.10 

usual activities 4 (mean) -2.80 0.16  -2.20 0.12  -2.99 0.17  -2.66 0.14  -2.50 0.13 

usual activities 5 (mean) -3.99 0.21  -3.08 0.16  -4.27 0.23  -3.75 0.19  -3.53 0.19 

self-care 2 (mean)  -0.46 0.11  -0.39 0.09  -0.35 0.12  -0.49 0.10  -0.44 0.10 

self-care 3 (mean) -1.18 0.13  -0.96 0.10  -1.14 0.14  -1.18 0.11  -1.08 0.10 

self-care 4 (mean) -2.33 0.15  -1.86 0.12  -2.37 0.17  -2.25 0.13  -2.11 0.14 

self-care 5 (mean) -3.36 0.18  -2.70 0.14  -3.48 0.21  -3.24 0.17  -3.07 0.17 

pain & discomfort 2 (mean) -0.91 0.11  -0.74 0.09  -0.9 0.13  -0.85 0.11  -0.80 0.10 

pain & discomfort 3 (mean) -2.20 0.14  -1.70 0.11  -2.27 0.14  -2.03 0.13  -1.93 0.13 

pain & discomfort 4 (mean) -4.21 0.21  -3.31 0.16  -4.46 0.22  -3.96 0.20  -3.71 0.19 

pain & discomfort 5 (mean) -5.95 0.29  -4.61 0.22  -6.29 0.29  -5.55 0.27  -5.26 0.26 

anxiety & depression 2 (mean) -0.78 0.11  -0.67 0.09  -0.75 0.13  -0.72 0.10  -0.71 0.11 

anxiety & depression 3 (mean) -1.97 0.14  -1.60 0.11  -1.99 0.14  -1.84 0.12  -1.79 0.13 

anxiety & depression 4 (mean) -3.81 0.20  -3.04 0.15  -4.00 0.22  -3.54 0.18  -3.44 0.18 

anxiety & depression 5 (mean) -5.07 0.27  -3.99 0.19  -5.27 0.28  -4.69 0.24  -4.50 0.24 

               

mobility 2 (SD) 0.51 0.10  0.50 0.09  0.53 0.11  0.52 0.10  0.48 0.09 

mobility 3 (SD) 0.64 0.11  0.84 0.11  0.64 0.14  0.70 0.12  0.65 0.10 

mobility 4 (SD) 1.11 0.15  1.43 0.14  1.14 0.17  1.21 0.16  1.20 0.16 



mobility 5 (SD) 1.68 0.17  2.35 0.17  1.85 0.24  1.91 0.20  2.04 0.21 

usual activities 2 (SD) 0.54 0.12  0.45 0.09  0.54 0.12  0.53 0.12  0.48 0.10 

usual activities 3 (SD) 0.66 0.12  0.64 0.11  0.73 0.12  0.63 0.11  0.59 0.10 

usual activities 4 (SD) 1.06 0.17  1.24 0.14  1.13 0.17  1.13 0.18  1.13 0.16 

usual activities 5 (SD) 2.01 0.20  2.22 0.17  2.28 0.23  2.31 0.21  2.26 0.19 

self-care 2 (SD)  0.55 0.11  0.51 0.09  0.51 0.10  0.55 0.11  0.49 0.09 

self-care 3 (SD) 0.55 0.11  0.57 0.12  0.49 0.10  0.50 0.11  0.51 0.10 

self-care 4 (SD) 0.72 0.13  1.06 0.15  0.88 0.17  0.91 0.15  1.06 0.15 

self-care 5 (SD) 1.18 0.17  1.68 0.18  1.55 0.20  1.53 0.19  1.73 0.17 

pain & discomfort 2 (SD) 0.61 0.12  0.62 0.09  0.65 0.11  0.56 0.10  0.55 0.11 

pain & discomfort 3 (SD) 0.98 0.14  1.17 0.12  1.06 0.15  0.91 0.14  0.97 0.14 

pain & discomfort 4 (SD) 1.94 0.19  2.06 0.16  2.24 0.21  1.83 0.22  2.00 0.20 

pain & discomfort 5 (SD) 2.81 0.23  3.04 0.19  3.27 0.29  2.75 0.27  2.96 0.25 

anxiety & depression 2 (SD) 0.70 0.12  0.56 0.10  0.71 0.12  0.62 0.11  0.55 0.10 

anxiety & depression 3 (SD) 1.01 0.13  1.00 0.11  1.05 0.16  0.95 0.13  0.83 0.13 

anxiety & depression 4 (SD) 1.92 0.19  1.88 0.14  2.14 0.22  1.92 0.17  1.78 0.17 

anxiety & depression 5 (SD) 2.63 0.24  2.65 0.19  3.02 0.28  2.63 0.23  2.55 0.23 

               

garbage class share 0.19 0.01  n/a  n/a  n/a  n/a 

 

                                                                    *,**,*** MIXL estimates after RLH selection with pr(RLHi<½)>0.01, 0.05, and 0.10, respectively 

 

 

 


