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Abstract 

Background: Health utilities derived from value sets for the EQ-5D-5L are commonly used in 
economic evaluations, however the precision of the value sets is of the same order of magnitude 
as reported minimum important differences (MIDs), which typically range from 0.05 to 0.1. We 
examined whether modelling spatial correlation among health states could improve the precision 
of the value sets. 

Methods: Using data from 7 EQ-5D-5L valuation studies (Canada, China, Germany, Indonesia, 
Japan, Korea and the Netherlands) we compared the predictive precision of the published linear 
model, a recently proposed 8-parameter level-scale model, and two Bayesian models with spatial 
correlation. Predictive precision was quantified through the root mean squared error (RMSE) for 
out-of-sample predictions of state-level mean utilities on omitting individual states, as well as 
omitting blocks of states.  

Results: In all seven countries, on omitting single health states, Bayesian models with spatial 
correlation improved upon the published linear model: the RMSEs for the originally published 
models were 0.060, 0.055, 0.060, 0.061, 0.039, 0.050 and 0.087 for Canada, China, Germany, 
Indonesia, Japan, Korea and the Netherlands respectively, and could be reduced to 0.044, 0.049, 
0.051, 0.053, 0.037 0.037 and 0.086 respectively on using spatial correlation. On omitting blocks 
of health states, Bayesian models with spatial correlation led to smaller RMSEs in just one 
country, while the 8-parameter model led to smaller RMSEs in 5 of the 7 countries. 

Discussion: Bayesian models incorporating spatial correlation and the 8-parameter models offer 
promising approaches to improving the precision of value sets for the EQ-5D-5L. The 
differential performance of the Bayesian models on omitting single states compared to omitting 
blocks of states suggests that designing valuation studies to capture more health states may 
further improve precision. We suggest that Bayesian models with spatial correlation and 8-
parameter models be considered as candidate models when creating value sets, and that 
alternative designs be explored; this is vital given that the prediction errors in value sets need to 
be smaller than the MID of the instrument. 

 

  



Introduction 

Many economic evaluations rely on the value sets of multi-attribute utility instruments (MAUIs) 
in order to quantify quality-adjusted life years (QALYs) [1]. Value sets estimate the mean 
population utility for each possible health state captured by the MAUI, and are estimated through 
a valuation study. The accuracy of value sets varies; standard errors for state-wise mean utilities 
for the SF-6D range from 0.03 to 0.06 [2], while root mean square errors (RMSEs) for the EQ-
5D-3L range from 0.03 to 0.28. Given that reported MIDs range from 0.03-0.04 (SF-6D) [3], 
0.05-0.08 (EQ-5D-3L) [3-5] and 0.04 to 0.1 (EQ-5D-5L) [6-12], improvements to the accuracy 
of these value sets are desirable.  

While increasing the number of respondents in a valuation study may seem an obvious solution, 
it may not be the best approach. Valuation studies typically use a sample sizes of 500-1000 [13, 
14], and increasing sample sizes beyond 1000 has minimal impact on precision of the value sets 
[15, 16]. This is because the precision in the value set is driven by both the accuracy of 
regression parameters used in modelling valuation data and also by mis-specification in 
functional form, i.e. the fact that any non-saturated model for the mean health utility as a 
function of health state attributes is likely to be mis-specified [ref]. Increasing the sample size 
can improve precision of estimated regression parameters but has no effect on mis-specification 
of functional form. For example, in the United States valuation of the EQ-5D-3L, 84% of the 
parameter uncertainty in the value set was driven by mis-specification of the functional form 
[17]. 

Although increasing the number of respondents is unlikely to improve the accuracy of value sets, 
increasing the number of health states directly valued is more promising, as are alternative 
approaches to analysis. We consider each of these approaches below. 

Valuation studies typically include direct valuation of a small subset of the health states 
represented by the instrument. For example, the protocol for the EQ-5D-5L has 86 of the 3125 
health states being directly valued through time trade-off (TTO) tasks. Including more health 
states allows for more complex functional forms and hence has the potential for reduced model 
mis-specification. For example, valuation studies of the EQ-5D-3L typically include 42 or fewer 
health states, allowing the data to be modelled with main effects models plus some specific 
interaction terms (e.g. N3 [18] or I2, I3 [19]), but more complex models result in over-fitting. 
The Australian EQ-5D-3L valuation study included 197 health states and allowed for inclusion 
of many more interaction terms [20]. In work quantifying precision of a value set as a function of 
the sample size and states valued, Shams et al recommend valuing as many states as possible in 
order to improve predictive precision [16]. 

The typical approach to modelling valuation data is a linear regression, however this may not be 
optimal. In EQ-5D-5L valuation studies, which include direct valuations of 86 of the 3125 health 
states captured by the instrument, non-linear level-scale models have been shown to out-perform 
the traditional linear models in a number of countries [21], likely due to their parsimony. 
Bayesian approaches which include both a parametric functional form and a non-parametric 
model mis-specification term with spatial correlation have also been shown to out-perform 



traditional regression approaches for both the US EQ-5D-3L valuation study [22] and the UK 
SF-6D valuation study [2]. 

As tools to improve the precision of value sets, alternative analytic models hold an important 
advantage over changes to the design of valuation studies: they can be used now, on existing 
valuation data at little to no additional cost. While promising, the performance of Bayesian 
models with spatial correlation has been examined only in isolated cases, and the models have 
never been compared head-to-head. The purpose of this study was to examine the performance 
of these models in a head-to-head comparison among seven EQ-5D-5L valuation studies, in 
order to gain a better understanding of their usefulness in improving the accuracy of estimated 
value sets. We consider their use in combination with designs featuring direct valuation of more 
health states in the discussion. 

 

Methods 

The EQ-5D-5L instrument 

The EQ-5D-5L is a short questionnaire capturing 5 dimensions of quality life: mobility, self-
care, usual activities, pain/discomfort, and anxiety/depression. For each dimension, respondents 
indicate one of 5 levels that best describes their health that day: no problems, slight problems, 
moderate problems, severe problems, extreme problems/unable to perform tasks. For a detailed 
description, please see [14]. The EQ-5D-5L descriptive system thus describes 3125 (55) health 
states, each of which is assigned a utility. These utilities are estimated in valuation studies; since 
utilities are country-specific [23], ideally each country has its own valuation study. 

Data 

We used data from the EQ-5D-5L valuation studies conducted in Canada [24], China [25], 
Germany [26], Indonesia [27], Japan [28], Korea [29], and the Netherlands [30]. While 
participants in these studies completed both composite time trade-off (cTTO) [14] and discrete 
choice experiments (DCEs), we consider TTO data only. In each country, the study design 
followed the valuation protocol developed by EuroQol Group [14], described briefly below.  
 
The target sample size in each country was 1000. Each participant valued 10 health states. 
Participants were assigned at random to one of 10 blocks of 10 health states, where each block 
contained one mild health state (with only 1 dimension at level 2 and all others at level 1), the 
worst state (all dimensions at level 5), and the remaining states in each block were chosen to 
cover a range of severities. A total of 86 health states are represented among the 10 blocks.  
 

Models 
 

We compared the performance of the originally published model to that of the 8-parameter 
model, and Bayesian approaches with spatial correlation using the Shams and Kharroubi models. 
We describe each method briefly below. 



For each study, we used the published functional form in a mixed effects model (with random 
intercepts for subjects). For example, for Canada, we use a model with 5 main effects using 
linear terms of each dimension (MO, SC, UA, PD, AD), 5 terms of each dimension indicating if 
it has level 4 or level 5 (MO45, SC45, UA45, PD45, AD45), and an interaction term (Num45sq) 
which is the square of the total number of level 4 or 5 states minus 1. For China, we use an 8-
parameter model (described below), and for all other countries, we use a model with main effects 
only, where each dimension uses 4 dummy variables indicating if the states is in a level different 
from level 1 (MO2, MO3, …, MO5, SC2, …, SC5, …, AD2, … AD5) so in total we have 21 
parameters including the intercept. The mixed effects models were fit using lmer from the R 
package lme4 [31]. 

We also fit 8-parameter level-scale models, as described in [21]. These models specify 
disutilities of being at levels 2, 3, 4 and 5, and assume that these are the same across dimensions 
up to a dimension-specific multiplicative constant. Specifically, letting !! be the mean utility for 
health state j, they take 

1 − µ! = &"'β#$)*2! + β%&-.2! + β'(/02! + β)*122! + β(*022!3 	
+	&+'β#$)*3! + β%&-.3! + β'(/03! + β)*123! + β(*023!3 	
+	&,'β#$)*4! + β%&-.4! + β'(/04! + β)*124! + β(*024!3
+ 'β#$)*5! + β%&-.5! + β'(/05! + β)*125! + β(*0253 

Where β#$ , β%& , β'(, β)* , β(*,&", &+, &, are the parameters to be estimated. This model was fit 
using nonlinear least squares implemented by the nls function in R. 

Turning now to the Bayesian models, both the Shams and Kharroubi models take 

!! = 1 − '9!: + ;!3, 

with ;!~)=>(0, Σ), where the (j,k)th entry of Σ is 

Σ!. = C/" exp G−H0('MO! −MO.3
" + 'SC! − SC.3

" + 'UA! − UA.3
" + 'PD! − PD.3

"

+ 'AD! − AD.3
")Q . 

If TTOij is the utility for subject i valuing health state j, the Shams model takes TTOij ~ N(!! +
S1 , C2"), where the subject-level random intercepts are distributed as >(0, C3"). The Kharroubi 
model uses a multiplicative subject-level random effect, i.e. TTOij ~ N(1 − (1 − !!S1), C2"), and 
in our implementation we take ui~Gamma(C34", C34"). 

For comparability with the parametric approaches, the functional form (i.e. the choice of X) was 
the same as used in the parametric models (i.e., that reported by the valuation study in question). 

We specified priors as follows. Each entry of the coefficients : followed uniform distribution on 
[0,1], with the exception of the coefficient corresponding to the Num45sq term in Canada, which 
was uniform on [0, 0.1]. The standard deviations σ/ , σ3, σ2 all followed uniform distributions on 
[0,1]. The spatial correlation parameter !! had a Uniform prior on [0.01,5/4]; our initial intention was 



to follow [23] and use a Uniform on [0,5/4], but we found very small values of !! led to computational 
errors. 

Models were fit using JAGS version 4.3.0 [32]. We ran 2000 iterations for all models, increasing 
the number of iterations until the Geweke diagnostic [33] as implemented in rjags [38] did not 
show evidence of non-convergence. 

 

Model assessment 

Fitted models were compared in terms of their predictive performance and logical consistency of 
the resulting value sets.  

Predictive performance 

The out-of-sample predictive performance of the models was assessed using the mean absolute 
error (MAE) and root mean squared error (RMSE); in all cases the quantities to be predicted 
were the state-specific mean utilities.   

Out-of-sample predictive performance was computed on omitting health states, and on omitting 
blocks (which amounts to omitting both individuals and health states). Models were fit on a 
reduced dataset, then the predicted values for the held-out health states were compared to the 
observed values. Specifically, we computed the sample mean of each of the 86 health states from 
the full data, which is the average of valuations among all subjects who have valued the state.  
The predicted value for each state is obtained in each held-out sample, and their means are 
compared with the state means in the original full data.  
 

Logical consistency 
For each pair of health states where one state dominates the other, we checked whether the value 
set given by each model yielded logically consistent results, i.e. a predicted utility for the 
dominated health state that was larger than for the dominating health state. Logical consistency 
checks were done on the full dataset.  

 

  
Results 

On cross-validation omitting states, the Bayesian approaches performed best in all countries 
except the Netherlands (Table 1 and Figure 1). The Shams model was preferred over the 
Kharroubi model in five of the countries. Compared to the published functional forms, the Shams 
model led to reductions of 46%, 8%, 28%, 25%, 10%, 45% and 2% in MSE in Canada, China, 
Germany, Indonesia, Japan, Korea and the Netherlands respectively. The corresponding 
reductions for the Kharroubi model were 30%, 10%, 6% and 29% for Canada, Germany, 
Indonesia and Korea, respectively; in China, Japan and the Netherlands the Kharroubi model had 



higher MSEs than the published functional form. In the Netherlands, the 8-parameter model 
performed best. In no country did the published functional form perform best.  

On cross-validation omitting blocks, the 8-parameter models led to the smallest RMSEs in four 
countries, the published functional form in one, the Shams model in one country. In the 
remaining country, Korea, the Kharroubi model had RMSE smaller than the RMSEs for the other 
models.  

The proportion of dominant pairs with logical inconsistencies was below 0.2% for both the 
Shams and Kharroubi models (Table 2). Logical inconsistencies were higher for the Kharroubi 
model than for the Shams model. 

 

 

Discussion 

We have shown that Bayesian approaches incorporating spatial correlation improve out-of-
sample predictive accuracy when one state is held out at a time. Of the two Bayesian models 
considered, the Shams model out-performed the Kharroubi model in most cases. When whole 
blocks of 10 health states are held out, the Bayesian models no longer improve predictive 
accuracy, and the 8-paramter level-scale model is most often preferred. Both the Shams and 
Kharroubi models have fewer than 0.2% of dominant pairs showing logical inconsistencies. 

Gains in predictive precision on using the Shams and Kharroubi models are in line with the 26% 
reduction in MSE for the US EQ-5D-3L valuation study reported by Shams [22] and the 23% 
reduction in MSE for the UK SF-6D valuation study reported by Kharroubi [2]. The superiority 
of the 8-parameter model over the published parametric functional forms was also in line with 
previous work [21] and raises the question of whether the functional forms used to create value 
sets are over-parameterized.  

In predicting the mean utility for any given health state, the spatial correlation structure in the 
Bayesian models draws information from neighbouring health states. This explains why the 
performance of these models deteriorates on omitting blocks instead of states: on omitting blocks 
the state-level information is more sparse, leaving less information to draw on.  

While our results show that the Bayesian models improve predictive accuracy on omitting single 
health states across a range of countries, our results are specific to the EQ-5D-5L. The 
performance of these methods in other instruments remains to be explored. 

Even with the Bayesian models, the accuracy of the estimated value sets requires improvements. 
The Bayesian models with spatial correlation have MAEs of the same order of magnitude as 
reported MIDs for the EQ-5D-5L (which range from 0.05 to 0.1 [6-12]). Given our observation 
that the predictive performance of the Bayesian models decreases as the number of health states 
used for fitting the models decreases (i.e., on omitting blocks rather than states), we hypothesize 
that valuing more states, even if it meant fewer observations per state, would lead to better 



predictive precision. Future work examining the optimal selection of states to be valued could 
play an important role in developing more accurate value sets. 

We suggest that valuation studies examine the out-of-sample predictive performance of the 
traditional parametric functional forms in comparison to 8-parameter, Shams and Kharroubi 
models. Code for fitting the Shams, Kharroubi and 8-parameter models is available in the 
Appendix. Our results show that this could improve the accuracy of the resulting value sets and 
thus improve the accuracy of cost-utility analyses that use health utility instruments to measure 
utilities. 

 

 

  



Tables 
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Canada 0.050 0.050 0.034 0.040 0.051 0.049 0.040 0.043 

China 0.041 0.041 0.038 0.043 0.042 0.042 0.047 0.052 

Germany 0.048 0.043 0.040 0.045 0.050 0.045 0.048 0.056 

Indonesia 0.049 0.050 0.043 0.048 0.049 0.051 0.048 0.050 

Japan 0.031 0.040 0.030 0.040 0.030 0.031 0.034 0.037 

Korea 0.041 0.039 0.030 0.035 0.041 0.040 0.041 0.038 

Netherlands 0.070 0.062 0.069 0.075 0.069 0.062 0.067 0.077 

RMSE         

Canada 0.060 0.063 0.044 0.050 0.060 0.063 0.050 0.053 

China 0.051 0.051 0.049 0.055 0.053 0.053 0.060 0.066 

Germany 0.060 0.055 0.051 0.057 0.064 0.057 0.064 0.070 

Indonesia 0.061 0.062 0.053 0.059 0.059 0.062 0.064 0.061 

Japan 0.039 0.036 0.037 0.049 0.039 0.037 0.043 0.047 

Korea 0.050 0.049 0.037 0.042 0.051 0.052 0.050 0.047 

Netherlands 0.087 0.079 0.086 0.095 0.087 0.079 0.086 0.101 

 
 
Table 1: Mean Absolute Errors (MAE) and Root Mean Square Errors (RMSE) for all seven 
countries. Errors represent out-of-sample prediction errors on (a) states and (b) blocks 
  



Country Shams Kharroubi 

Canada 97 1436 

Germany 152 424 

Indonesia 562 770 

Japan 0 113 

Korea 31 145 

Netherlands 1151 1520 

Table 2: Of 756250 dominant pairs, the number of pairs of with logical inconsistency for 
the Shams and Kharroubi models  



 
Figures 

  



 

Figure 1: Root mean square errors (RMSE) and mean absolute errors (MAE) on omitting states (top row) and blocks (bottom row)
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Code 

 

Shams model 

 
model{ 
     
    for(i in 1:datalength){ 
 mu[i] <- mu.pred[statenum86[i]] + u[idnum[i]] 
 tto[i] ~ dnorm(mu[i],tausqY) 
 } 
 
# Variance-covariance matrix for the deltas 
for(state1 in 1:86){ 
 for(state2 in 1:86){ 
  sigma[state1,state2] <- pow(sigmad,2)*exp(-t
 heta.w*pow(MO[state1]-MO[state2],2) 
       - theta.w*pow(SC[state1]-
SC[state2],2) 
       - theta.w*pow(UA[state1]-
UA[state2],2) 
       - theta.w*pow(PD[state1]-
PD[state2],2) 
       - theta.w*pow(AD[state1]-
AD[state2],2) 
      ) 
 } 
} 
taud[1:86,1:86] <- inverse(sigma[,]) 
 
# compute the state-level means conditional on state level random effects 
mu.pred.xbeta[1:86] <- x.mat[,]%*%beta   # this is the fixed effect component 
mu.pred[1:86] ~ dmnorm(mu.pred.xbeta[],taud[,]) # this is mu (fixed + state-
level random effect) 
 
 
 
# Subject level random effects 
for(subj in 1:(num_id-1)){ 
 u[subj] ~ dnorm(0,tausqu) 
} 
u[num_id] <- -sum(u[1:(num_id-1)])   # sum to zero constraint for random 
effects 
 
# Priors 
 
theta.w ~ dunif(0.01,1.25) 
tausqu <- pow(sigmau,-2) 
tausqY <- pow(sigmaY,-2) 
 
sigmau ~ dunif(0,1) 
sigmaY ~ dunif(0,1) 
sigmad ~ dunif(0,1) 
 



beta[1]~dnorm(1,1/4) 
for(i in 2:21){ 
 beta[i] ~ dnorm(0,1/4) 
} 
 
} 
 
 
Kharroubi model 
 
 
model{ 
     
       for(i in 1:datalength){ 
 mu[i] <- 1-mu.pred[statenum86[i]]*u[idnum[i]] 
 tto[i] ~ dnorm(mu[i],tausqY) 
 } 
 
# Variance-covariance matrix for the deltas 
for(state1 in 1:86){ 
 for(state2 in 1:86){ 
  sigma[state1,state2] <- pow(sigmad,2)*exp(-
theta.w*pow(MO[state1]-MO[state2],2) 
       - theta.w*pow(SC[state1]-
SC[state2],2) 
       - theta.w*pow(UA[state1]-
UA[state2],2) 
       - theta.w*pow(PD[state1]-
PD[state2],2) 
       - theta.w*pow(AD[state1]-
AD[state2],2) 
      ) 
 } 
} 
taud[1:86,1:86] <- inverse(sigma[,]) 
 
# compute the state-level means conditional on state level random effects 
mu.pred.xbeta[1:86] <- x.mat[,]%*%beta   # this is the fixed effect component 
mu.pred[1:86] ~ dmnorm(mu.pred.xbeta[],taud[,]) # this is mu (fixed + state-
level random effect) 
 
 
 
# Subject level random effects 
for(subj in 1:(num_id)){ 
   u[subj] ~ dgamma(1/tausqu,1/tausqu) 
} 
#u[num_id] <- -sum(u[1:(num_id-1)])   # sum to zero constraint for random 
effects 
 
# Priors 
#theta.w <- 1000   # This should give correlations close to zero 
theta.w ~ dunif(0.01,1.25) 
tausqu <- pow(sigmau,-2) 
tausqY <- pow(sigmaY,-2) 
 



sigmau ~ dunif(0,1) 
sigmaY ~ dunif(0,1) 
sigmad ~ dunif(0,1) 
 
beta[1]~dnorm(1,1/4) 
for(i in 2:21){ 
 beta[i] ~ dnorm(0,1/4) 
} 
#beta[12] ~ dnorm(0,0.1) 
} 
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